

Consulting Engineers – Testing – Inspection Services – Analytical Laboratories

July 17, 2023

American Structurepoint, Inc. 9025 River Road, Suite 200 Indianapolis, IN 46240

Attention: Nicholas R. Murphy, PE

Reference: Geotechnical Investigation Des No.: 2005FFE Fortville Pike and CR 300 N Roundabout Hancock County, Indiana CTL Project No.: 22050123IND

Dear Mr. Murphy:

In accordance with your authorization to proceed, CTL Engineering, Inc. has completed the geotechnical investigation on the above referenced site. The report includes the results of the field and laboratory testing, and pavement considerations for the roundabout construction.

Thank you for the opportunity to be of service to you on this project. If you have any questions or need further information, please contact us at (317) 295-8650.

Sincerely,

CTL ENGINEERING, INC.

hy II

Anthony L. Mason, PE Senior Geotechnical Engineer

GEOTECHNICAL INVESTIGATION

DES NO: 2005FFE FORTVILLE PIKE AND CR 300 N ROUNDABOUT HANCOCK COUNTY, INDIANA CTL PROJECT NO.: 22050123IND

PREPARED FOR:

AMERICAN STRUCTUREPOINT, INC. 9025 RIVER ROAD, SUITE 200 INDIANAPOLIS, IN 46240

PREPARED BY:

CTL ENGINEERING, INC. 1310 S. FRANKLIN ROAD INDIANAPOLIS, INDIANA 46239

JULY 17, 2023

EXECUTIVE SUMMARY

Des No: 2005FFE Fortville Pike and CR 300 N Roundabout Hancock County, Indiana

<u>**Project Description**</u>: The project involves the construction of a new roundabout at the intersection of Fortville Pike and CR 300 N. Plans for the roundabout construction and the traffic data were not available at the time of this report preparation.

Subsurface Conditions: The test borings drilled on the travel lanes of CR 300 N and Fortville Pike exhibited full depth hot mix asphalt pavement at the surface with approximate thickness of 12 inches overlying subbase consisting of sand and gravel and crushed stone and ranging in thickness of 6 to 18 inches. Highly fractured concrete was encountered between HMA and subbase layer in RB-5. RB-7 encountered topsoil at the surface with approximate thickness of 5.5 inches. Below the existing pavement and/or surficial soil, the test borings encountered soils classified as loam, clay loam, sandy clay loam and sandy clay loam of A-4 and A-6 soil categories.

Pavement Considerations: Subsequent to removal of existing pavement and site grading, the exposed foundation soils should be proofrolled in accordance with INDOT Standard Specifications (ISS) 203.26, where applicable. Depending upon the time of construction and amount of precipitation, the foundation soils may exhibit unstable condition under proofrolling. In such an event, the foundation soils shall be improved before the subgrade treatment is performed. Foundation soil improvement may be performed in general accordance with ISS 203.09. Foundation improvement will be at the discretion of the Engineer.

Based on these considerations and soil data obtained from field and laboratory testing, the new pavement may be designed using the soil parameters below in Table A. The recommended subgrade treatment should be performed in accordance with INDOT Standard Specifications Section 207.

This summary is provided for general information only, and it should not be used as the only source for any design, estimating or bidding. Detailed recommendations are provided in the geotechnical report. The report should be used in its entirety.

Resilient Modulus (M _R) of Prepared Subgrade	10,000
Resilient Modulus (M _R) of Natural Subgrade	3,000
Predominant Soil Type	Sandy Clay Loam (A-6)
Percent Passing #200	60.1
% Silt	38.7
LL	28.5
PL	16.3
PI	12.2
Depth to Water Table	> 7.5 feet below existing grade
Natural Density (pcf) of Natural Subgrade	127
% Moisture of Natural Subgrade	18
Organic Content	
Marl Content	
Sulfate Content (ppm)	
Rock Depth	> 15 feet below existing grade
Filter Fabric Required for Underdrains	918.02(b) Type 1A (NW) *
Subgrade Treatment	Type IBC

Table A- Soil Parameters for Pavement Design

* Underdrains depth < 3 feet.

This summary is provided for general information only, and it should not be used as the only source for any design, estimating or bidding. Detailed recommendations are provided in the geotechnical report. The report should be used in its entirety.

TABLE OF CONTENTS

PAGE

I.	PROJE	ECT LOCATION AND DESCRIPTION	. 1
II.	SUBS	URFACE INVESTIGATION	. 1
III.	FINDI	NGS	. 2
	A.	Subsurface Conditions	. 2
	B.	Groundwater	. 2
IV.	DISCU	JSSION AND RECOMMENDATIONS	. 6
	A.	Pavement Considerations	. 6
	B.	General Site Preparation and Earthwork	. 8
V.	CONC	LUDING REMARKS	. 8

LIST OF TABLES

Table 1– Summary of Foundation Soil Testing	3
Table 2 – Summary of Density and Resilient Modulus Testing	4
Table 3 –Groundwater Readings	5
Table 4 – Soil Parameters for Pavement Design	7
Table 5 – Summary of Areas of Concern	7

LIST OF APPENDICES

APPENDIX A	BORING LOCATION PLAN
APPENDIX B	TEST BORING RECORDS
APPENDIX C	LABORATORY TESTING
APPENDIX D	SOIL PROFILES

I. <u>PROJECT LOCATION AND DESCRIPTION</u>

The project is located at the intersection of Fortville Pike and CR 300 N in the city of Greenfield, Hancock County, Indiana. The project involves the construction of a new roundabout.

Plans for the roundabout construction and the traffic data were not available at the time of this report preparation. However, based on site observations and conversations with American Structurepoint, it is assumed cut/fill for the grade preparation will be less than 3 feet. Once the design plans become available, CTL should be provided the opportunity to review the recommendations within this report.

II. <u>SUBSURFACE INVESTIGATION</u>

Seven roadway test borings, designated as RB-1 through RB-7, were drilled to depths ranging from 7.5 to 15 feet below the existing grade. Test Borings RB-1 through RB-4 were drilled on CR 300 N and Fortville Pike and borings RB-5, RB-6 and RB-7 were drilled within the proposed roundabout area. An offset boring RB-3A was drilled next to the adjacent boring for the purpose of obtaining Shelby tube sample.

The test borings were advanced with a truck mounted drilling rigs utilizing hollow stem augers (HSA) between February 20th and February 22nd, 2023. Standard Penetration tests were conducted using 140-pound automatic hammer falling 30 inches to drive a 2-inch O.D. split barrel samplers for 18 inches.

Soil samples obtained from the drilling operation were preserved in glass jars, visually classified in the field by the drilling crew and in the laboratory by a geotechnical engineer. The recovered soil samples were tested for Natural Moisture Content. Representative soil samples were tested for Grain Size Distribution, Atterberg Limits, Unconfined Compressive Strength, and pH. Standard proctor test was performed on the bulk (bag) samples and resilient modulus test was performed on the Shelby tube samples and remolded bulk samples.

Drilling, soil sampling and laboratory testing were performed following standard geotechnical engineering practices, INDOT and current AASHTO/ASTM procedures. Results from field tests are shown on the enclosed Test Boring Records in Appendix B and laboratory test sheets in Appendix C.

Latitude and longitude coordinates of the test borings were estimated from Google Earth and located in the field using a Trimble Geo7X GPS System. The elevations of the test borings were estimated from the county GIS map. The boring locations and surface

elevations shown on the Boring Location Plans in Appendix A and Test Boring Records in Appendix B should be considered approximate

III. <u>FINDINGS</u>

A. <u>Subsurface Conditions</u>

The test borings drilled on the travel lanes of CR 300 N and Fortville Pike exhibited full depth hot mix asphalt (HMA) pavement with approximate thickness of 12 inches overlying subbase consisting of sand and gravel and crushed stone and ranging in thickness of 6 to 18 inches. Highly fractured concrete was encountered between the HMA and subbase layer in RB-5. RB-7 encountered surficial soil (topsoil) at the surface with an approximate thickness of 5.5 inches.

Below the existing pavement and/or surficial soil, the test borings encountered cohesive soils classified as loam, clay loam, sandy clay loam and sandy clay loam of the A-4 and A-6 soil categories. The cohesive soils exhibited Liquid Limit (LL) values ranging from 19 to 33 percent and Plasticity Index (PI) values of 4 to 16 percent. Natural moisture content values of the foundation soils ranged from 9 to 22 percent. Detailed information of soil type and standard penetration values are shown in the Test Boring Records in Appendix B, laboratory test results in Appendix C and summarized below in Table 1.

Resilient modulus value of 1,649 psi was obtained from the resilient modulus test performed on undisturbed soil samples (Shelby Tubes). Standard proctor test was performed on the bulk samples and resilient modulus test was performed on remolded bulk samples. The test results are included in Appendix C and summarized in Table 2.

The pH values of the subgrade soils ranged from 6.4 to 6.9. Test results are shown on the Summary of Special Laboratory Test Results in Appendix C. Generalized soil profiles of the subsurface conditions are included in Appendix D.

B. <u>Groundwater</u>

Groundwater levels and soil cave-in depths were recorded during and following the drilling operation as shown on the enclosed Test Boring Records in Appendix B and summarized below in Table 3. It should be noted that groundwater levels recorded during this subsurface investigation may not be a reliable indication of long-term groundwater levels as it can take hours or days for groundwater within a borehole to equilibrate and due to fluctuations in groundwater levels due to seasonal variations of precipitation and other factors.

Boring No.	Northing	Easting	Lab No.	Classification	AASHTO	LL	PL	PI	% Passing #200	% Silt	% Clay	Natural Density (pcf)	% Moisture
RB- 1	39.82819	-85.79542	Lab 1	Sandy Clay Loam	A-6	29.9	16	13.9	42.2	21.8	20.4	_	20.1
RB- 2	39.82866	-85.79676	Lab 1	Sandy Clay Loam	A-6	29.9	16	13.9	42.2	21.8	20.4	130.1	18.9
RB- 3	39.82815	-85.79742	Lab 4	Clay Loam	A-4	25	16.8	8.2	69.4	46	23.4	124.9	22.1
RB- 4	39.8275	-85.79606	Lab 1	Sandy Clay Loam	A-6	29.9	16	13.9	42.2	21.8	20.4	—	14.4
RB- 5	39.82825	-85.79658	Lab 3	Loam	A-4	19.3	14.9	4.4	53.8	40.4	13.4	—	9.4
RB- 6	39.82807	-85.79624	Lab 2	Silty Clay Loam	A-6	32.9	17.2	15.7	85.4	59.5	25.9	—	21.2
RB- 7	39.82833	-85.7963	Lab 2	Silty Clay Loam	A-6	32.9	17.2	15.7	85.4	59.5	25.9	—	20.7
	Average				28.5	16.3	12.2	60.1	38.7	21.4	127.5	18.1	
Minimum				19.3	14.9	4.4	42.2	21.8	13.4	124.9	9.4		
	Maximum					32.9	17.2	15.7	85.4	59.5	25.9	130.1	22.1
		Standard	Deviation	1		4.9	0.8	4.3	19.9	17.2	4.3	3.7	4.6

Table 1– Summary of Foundation Soil Testing

Boring No.	RB-3	RB-7
Sample Type	Shelby Tube	Bag Sample
Sample No.	ST-1	BS-1
Soil Classification	Clay Loam	Silty Clay Loam
AASHTO Classification	A-4 (3)	A-6 (12)
Liquid Limit (LL)	25.0	32.9
Plastic Limit (PL)	16.8	17.2
Plasticity Index (PI)	8.2	15.7
Sulfate Content (ppm)	<20	
Specific Gravity	2.717	
Loss On Ignition (%)		
Calcium Carbonate (%)		
Maximum Wet Density (pcf)		129.7
Maximum Dry Density (pcf)		111.4
Optimum Moisture Content (%)		16.4
Natural Dry Density (pcf)	102.3	
Resilient Modulus (psi)	1,649	11,232 ⁽¹⁾
- Natural State at Moisture Content (%)	22.1	16.8 (1)

Table 2 – Summary of Density and Resilient Modulus Testing

⁽¹⁾ Resilient Modulus performed at optimum moisture content and within 95% of maximum dry density.

Boring No.	Boring Depth	Latitude	Longitudo	Waathar	Weather Groundwater Rea		Cave-in depth
Bornig No.	(feet)	Latitude	Longitude	weather	During Drilling	At Completion	(feet)
RB- 1	7.5	39.828191	-85.795418	Sunny	Dry	Dry	5.7
RB- 2	7.5	39.828661	-85.796764	Sunny	Dry	Dry	6.0
RB- 3	7.5	39.828151	-85.797417	Sunny	Dry	Dry	6.0
RB- 4	7.5	39.827500	-85.796061	Sunny	Dry	Dry	5.3
RB- 5	15	39.828248	-85.796578	Sunny	Dry	Dry	13.2
RB- 6	15	39.828072	-85.796236	Sunny	Dry	Dry	13.0
RB- 7 ⁽¹⁾	15	39.828329	-85.796301	Rain	Dry	Dry	6.0

Table 3 – Groundwater Readings

⁽¹⁾ Light rain was observed at the time of drilling.

IV. DISCUSSION AND RECOMMENDATIONS

A. <u>Pavement Considerations</u>

The project involves the construction of a new roundabout at the intersection of Fortville Pike and CR 300 N. Plans for the roundabout construction and the traffic data were not available at the time of this report preparation. The recommendations in this report assume cut/fill heights will be less than 3 feet. Once plans become available, CTL should be provided the opportunity to review the recommendations within this report.

Subsequent to removal of existing pavement and site grading, the exposed foundation soils should be proofrolled in accordance with INDOT Standard Specifications (ISS) 203.26, where applicable. Depending upon the time of construction and amount of precipitation, the foundation soils may exhibit unstable condition under proofrolling. In such an event, the foundation soils shall be improved prior to the subgrade treatment could be performed. Foundation soil improvement may be performed in general accordance with ISS 203.09. Foundation improvement will be at the discretion of the Engineer.

Based on these considerations and soil data obtained from field and laboratory testing, the new pavement may be designed using the soil parameters below in Table 4. The recommended subgrade treatment should be performed in accordance with INDOT Standard Specifications Section 207.

Based on the field and laboratory testing, areas of concern were identified at the locations referenced in Table 5. The general criteria for identifying areas of concern is based on soils having Liquid Limit greater than 50 percent, consistency of less than 5 blows per foot, organic matter of more than 3 percent, undocumented fill and/or in-place moisture content value of 4 percent above the optimum moisture content within approximately 24 inches below existing pavement. The foundation soils in these areas may need improvement in accordance with 203.09.

Resilient Modulus (M _R) of Prepared Subgrade	10,000
Resilient Modulus (M _R) of Natural Subgrade	3,000
Predominant Soil Type	Sandy Clay Loam (A-6)
Percent Passing #200	60.1
% Silt	38.7
LL	28.5
PL	16.3
PI	12.2
Depth to Water Table	> 7.5 feet below existing grade
Natural Density (pcf) of Natural Subgrade	127
% Moisture of Natural Subgrade	18
Organic Content	
Marl Content	
Sulfate Content (ppm)	
Rock Depth	> 15 feet below existing grade
Filter Fabric Required for Underdrains	918.02(b) Type 1A (NW) *
Subgrade Treatment	Type IBC

Table 4 – Soil Parameters for Pavement Design

* Underdrains depth < 3 feet.

Boring No.	Soil Type	Lat	Long	Undocumented Fill	Liquid Limit (%)	Blowcount SPT N-Value (bpf)	Organic Matter (%)	Moisture (%)
RB-7	Silty Clay Loam	39.828329	-85.796301	NA	NA	3	NA	NA

Table 5 – Summary of Areas of Concern

B. <u>General Site Preparation and Earthwork</u>

General site preparation and earthwork and pavement considerations are provided in the following paragraphs.

- 1. All surface objects, pavement, grass, vegetation, topsoil and roots located within the construction limits, shall be cleared and grubbed in accordance with ISS Section 201.
- 2. Subsequent to removal of existing pavement and site grading, the exposed pavement foundation soils should be proofrolled following ISS procedures, where applicable. Soft and/or wet foundation soils not meeting the proofrolling requirements may be encountered within the construction limits, especially in the area of Test Boring RB-7. Unsuitable soils shall be removed and treated in general accordance with ISS 203.09.
- 3. During earthwork operations, care should be taken to provide adequate drainage on the exposed soils. Ditches must be kept open at all times, and the subgrade should be graded at the end of each day, to facilitate good drainage.
- 4. Borrow material needed in fill areas should be in accordance with ISS Section 211. Topsoil and/or organically contaminated materials are not acceptable for use as backfill.
- 5. The backfill should be placed and compacted in accordance with ISS Section 203. The engineered fill should not be placed in a frozen condition or over a frozen subgrade.
- 6. All subgrade soils and pavement materials should conform to the latest issue of INDOT Construction and Material Specifications.

V. <u>CONCLUDING REMARKS</u>

The evaluations, conclusions, and recommendations in this report are based on our interpretation of the field and laboratory data obtained during the exploration, information available at the time of this report, our understanding of the project scope at the time of the report and our experience with similar sites and subsurface conditions using generally accepted geotechnical engineering practices. Although individual test borings are representative of the subsurface conditions at the boring locations on the dates drilled, they are not necessarily representative of the subsurface conditions between boring locations or subsurface conditions during other seasons of the year. If the scope of

the project changes the recommendations may change and may require additional investigation.

During the design process, it is recommended that CTL work with the project designers to confirm that the geotechnical recommendations are properly incorporated into the final plans and specifications, and to assist with establishing criteria for the construction observation and testing. CTL is not responsible for independent conclusions, opinions and recommendations made by others based on the data and the recommendations provided in this report.

The report was prepared by CTL Engineering, Inc. (Consultant) solely for the use of the Client in accordance with an executed contract. The Client's use of or reliance on this report is limited by the terms and conditions of the contract and by the qualifications and limitations stated in the report. It is also acknowledged that the Client's use of and reliance of this report is limited for reasons which include: actual site conditions that may change with time; hidden conditions, not discoverable within the scope of the assessment, may exist at the site; and the scope of the investigation may have been limited by time, budget and other constraints imposed by the Client.

Neither the report, nor its contents, conclusions nor recommendations are intended for the use of any party other than the Client. Consultant and the Client assume no liability for any reliance placed on this report by such party. The rights of the Client under contract may not be assigned to any person or entity, without the consent of the Consultant which consent shall not be unreasonably withheld.

This geotechnical report does not address the environmental conditions of the site. The Consultant is not responsible for consequences or conditions arising from facts that were concealed, withheld, or not fully disclosed at the time the assessment was conducted.

To the fullest extent permitted by law, the Consultant and Client agree to indemnify and hold each other, and their officers and employees harmless from and against claims, damages, losses and expenses arising out of unknown or concealed conditions. Furthermore, neither the Consultant nor its employees shall be liable to the Owner in an amount in excess of the available professional liability insurance coverage of the Consultant. In addition, Client and Consultant agree neither shall be liable for any special, indirect or consequential damages of any kind or nature.

The Consultant's services have been provided consistent with its professional standard of care. No other warranties are made, either expressed or implied.

Sincerely,

CTL ENGINEERING, INC.

hay I M

Anthony L. Mason, P.E. Senior Geotechnical Engineer

WANSIGDEL

Pawan Sigdel, PhD, PE Project Engineer

APPENDIX A

BORING LOCATION PLAN

BORING LOCATION PLAN							
Sources Coogle Forth		Date	Fortville Pike and CR 300 N Roundabo				
Source: Google Earth		4/3/2023	Des No. 2005FFE				
	CTL ENGINEERING, INC.	Scale	Hancock County, IN				
	GEOTECHNICAL ENGINEERS	None					
	TESTING * INSPECTION	Drawn By	Reviewed By	Page	Project No.		
ENGINEERING 😫	LABORATORY SERVICES	PS	AM	1 of 1	22050123IND		

APPENDIX B

TEST BORING RECORDS

SOIL DESCRIPTION

NON-COHESIVE SOIL DESCRIPTION

STANDARD PENETRATION BLOWCOUNTS PER FOOT (BPF)

Very Loose	0 - 5
Loose	6 - 10
Medium Dense	11 - 30
Dense	31 - 50
Very Dense	Over 50

COHESIVE SOIL DESCRIPTION

STANDARD PENETRATION BLOWCOUNTS PER FOOT (BPF)

Very Soft	0 - 3
Soft	4 - 5
Medium Stiff	
Stiff	11 - 15
Very Stiff	16 - 30
Hard	Over 30

GRADATION COMPONENT

SIZE

Boulde	prs	
Cobble	2S	Passing 8" Retained on 3"
	P	
Sand	Pass	ing #10 Retained on #200
Clay		Smaller than 0.002 mm

MOISTURE <u>TERMS</u>

DESCRIPTION

Dry	Powdery
Slightly Moist	Below Plastic Limit
Moist	
Very Moist	
Wet	

		TES	T BOR	ING	RECO	ORD								
CLIEN	Г	: American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 1	
PROJE	СТ	: Fortville Pike & CR 300N Roundabout						_	SHEE	Г	:1	_ 0	F	1
ROUTE	NO.	: Fortville Pike and CR 300 N	COUNTY	: Han	cock			_	DATE	START	ED : (02-20	-23	
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	.ETED : _	02-20	-23	
DES N	Э.	: 2005FFE F	PROJECT N	0:					CTL P	ROJEC	τ ΝΟ : :	22050	123IN	D
Boring	Elevatio	on: 909.0 feet Boring Depth : 7.5 fe	et	Boring	Method	: HSA			Ham			Itoma		
-	Latitude	e : 39.828191 Station :		Rig Ty		: B-57					ciency84			
	Longitu	de <u>-85.795418</u> Offset : Line :			Diamete	er: 3.25	" ID			er/Inspeo perature	ctor : <u>E</u> e :45			
		Line		-	ize				Wea			inny		
GROUI	NDWA	FER: $ abla$ Encountered at Dry $ abla$ At co	mpletion <u>Dr</u>	У						SE CONTRACTOR	Caved	in at <u>5</u>	5.7 fee	<u>t</u>
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION		Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)	A	tterbei Limits	rg
ш	őď			<u>50</u>	ΰź	SF	S	Å	Ξŏ	₽≥	Ξŭ	LL	PL	PI
908.0_	-	ASPHALT CONCRETE (12")		1.0										
907.0_		SAND AND GRAVEL BASE (12")			SS-1	12 9	12	100	6.5					
	2.5	Brown, Moist, Stiff to Soft, SANDY CLAY		2		3								
906.0_	_\	A-6, As Lab 1		3.0		3								
			++++ ++++ ++++	+ + *	SS-2	2 2	4	67	20.1					
<u>I</u>	5.0_	Brown, Moist, Soft to Medium Stiff, SILTY CLAY LOAM A-6, As Lab 2	+ + + + + + + + + + + - +	* + + *	SS-3	3 3 4	7	100	29.7					
901.5_	7.5_	Bottom of Boring at 7.5 feet	++++ +++ + + + +	+ + + <u>+</u> _7.5	SS-4	3 4 4	8	100	24.6					
	-	Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.												
	10.0													
	- - 12.5_ -													
	- - 15.0_													
				G METH					THOD		ABBR			
			HSA - Hollo SEA - Solid						n Samp be Sam		- Han - Liqu			eter
	11	Dhama: 217 205 8650	SFA - Solid Flight Auger ST - Shelby RC - Rock Coring CR - Rock Co				Core	Core Sample PL - Plastic Limit						
ENGINEL	RING Z	Phone: 317-295-8650	MD - Mud	Drilling			- Bag		mple PI - Plasticity Index					
			WD - Was HA - Hand		J		- Auge - Subl		ings Sample				Cone eter To	est

HA - Hand Auger

		TES	T BOR	ING	RECO	ORD								
CLIEN	г	American Structurepoint, Inc.						_	BORI	NG NO.	:	RB	- 2	
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	т	: 1	_ 0	F	1
ROUTE	E NO.	Fortville Pike and CR 300 N C	OUNTY	: Han	cock				DATE	STARTI	ED :	02-20	-23	
LOCAT	ION	Greenfield, Indiana							DATE	COMPL	ETED : _	02-20	-23	
DES N	0.	: 2005FFE P	ROJECT N	0:					ÇTL P	ROJEC	ΓNO : :	22050	123IN	D
Boring	Elevatio	on: <u>913.0 feet</u> Boring Depth : <u>7.5 fee</u>		Boring	Method	: <u>HSA</u>	L .		Ham	nmer	: <u>A</u> ı	utoma	tic	
		e : <u>39.828661</u> Station :		Rig Ty	pe	: <u>B-57</u>	Truck				ciency84			
	Longitu	de <u>-85.796764</u> Offset : Line :		Casing	Diamete	r : <u>3.25</u>	" ID			er/inspeo perature	ctor : <u>E[</u> :50)° F		
					ize	:				ather		unny		
GROU	NDWA	TER: ∇ Encountered at Dry ∇ At co	mpletion <u>Dr</u>	<u>у</u>	1					La constante da	Caved	in at <u>6</u>	6.0 fee	<u>t</u>
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION		Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)	A	tterbei Limits	rg
Stra Ele	Sar Dep			Stra	Sar Nur	SP.	SP	Rec	Moi Col	Tot		LL	PL	PI
912.0_	-	ASPHALT CONCRETE (12")		1.0										
910.5	2.5	CRUSHED STONE (18")		2.5	SS-1	17 14 8	22	100	4.3					
		Thin sand layer encountered from 4.0 feet to feet	94.5		SS-2	7 6 5	11	83	18.9	130.1	5.216 @ 15.0%	30	16	14
	5.0	Brown, Moist, Stiff to Soft, SANDY CLAY LOAM A-6 (2), Lab 1			SS-3	3 3 3	6	100	15.9					
905.5	7.5			7.5	SS-4	3 2 3	5	100	17.6					
	-	Bottom of Boring at 7.5 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.												
	- 10.0_ - -													
	- - 12.5_ -													
	- - 15.0_													
	TL ERING 2	CTL Engineering, Inc. Phone: 317-295-8650	HSA - Holld SFA - Solid RC - Rock MD - Mud WD - Was	l Flight A Coring Drilling	Auger	SS ST CR BS AC	- Split - Shel - Rocl - Bag - Auge	Spoo by Tul c Core Samp er Cutt		ple * nple LL le PL PI D(- Liqu - Plas - Plas CP - Dyn	d Per iid Lin stic Lin sticity amic	ietrom nit nit Index	eter

		TES	T BOR	ING	RECO	DRD								
CLIEN	Г	American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 3	
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Г	:1	0	F	1
ROUTE	ENO.	Fortville Pike and CR 300 N C	OUNTY	: Han	cock			_	DATE	STARTE	ED :	02-20	-23	
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	ETED : _	02-20	-23	
DES N	0.	: 2005FFE P	ROJECT	10:					CTL P	ROJECI	NO :	22050	123IN	D
Boring	Elevatio	on: <u>904.0 feet</u> Boring Depth : <u>7.5 fee</u>		Boring	Method	: <u>HSA</u>			Ham	mer	: <u>A</u> ı	utoma	tic	
		e: <u>39.828151</u> Station :		Rig Ty	ре	: <u>B-57</u>	Truck				ciency84			
	Longitu	de <u>-85.797417</u> Offset : Line :		Casing	Diamete	er : <u>3.25</u>	" ID			er/Inspec perature	tor : <u>El</u> :40			
				Core S	ize	:			Wea	•		unny		
GROU	NDWAT	TER: ∇ Encountered at Dry ∇ At co	mpletion <u>D</u>	ry						Ř	Caved	in at <u>6</u>	6.0 fee	<u>t</u>
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION		Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)		tterbe Limits	
Ele	Sa De			<u> </u>	Sa Nu	Р	SF	Re	ĕ°	°₽≷	гос	LL	PL	PI
903.0_		ASPHALT CONCRETE (12")		1.0										
902.0_		SAND AND GRAVEL BASE (12")		 م_2.0	SS-1	15 18 5	23	100	17.3					
	2.5				SS-2	3 4 3	7	100	26.2					
	5.0	Brown, Very Moist, Medium Stiff, CLAY LOA A-4, As Lab 4	AM		SS-3	3 3 3	6	83	29.5					
896.5_	7.5	Bottom of Boring at 7.5 feet Boring backfilled in accordance with INDOT		7.5	SS-4	3 3 4	7	100	27.5					
	- - 10.0 - - -	requirements and pavement restored with concrete patch.												
	12.5_ - - 15.0_													
	I	1				SA	MPLI	NG ME	ETHOD		ABBR	EVIA	TIONS	
	TL ERING ^g	CTL Engineering, Inc. Phone: 317-295-8650	MD - Mud WD - Was	d Flight A k Coring Drilling	uger	ST CR BS AC	- Shel - Rock - Bag - Auge	by Tul c Core Samp er Cutt		nple LL le PL PI	- Plas - Plas P - Dyn	iid Lin stic Lir sticity amic	nit nit Index	

Greenfield, Indiana 2005FFE F n: 904.0 feet Boring Depth : 4.0 fe : 39.828151 Station : de -85.797417 Offset : Line :		Boring Rig Typ	Method be Diamete	: <mark>B-57</mark>			SHEE DATE DATE <u>CTL P</u>	STARTI COMPL ROJEC ⁻	:1 ED : ETED : I NO : :	02-20- 02-20-	= 23 23	<u>1</u>				
Fortville Pike and CR 300 N 0 Greenfield, Indiana 2005FFE 2005FFE F n: 904.0 feet Boring Depth : 4.0 fe : 39.828151 Station : de -85.797417 Offset : Line : ER:	PROJECT N	<u>D:</u> Boring Rig Typ Casing	Method be Diamete	: <mark>B-57</mark>		_ _ 	DATE DATE <u>CTL P</u>	STARTI COMPL ROJEC ⁻	ED : (ETED : (I NO : 2	02-20- 02-20-	23 23	<u>1</u>				
Greenfield, Indiana 2005FFE F n: 904.0 feet Boring Depth : 4.0 fe : 39.828151 Station : de -85.797417 Offset : Line : ER: ∑ Encountered at ∑ At column	PROJECT N	<u>D:</u> Boring Rig Typ Casing	Method be Diamete	: <mark>B-57</mark>		_	DATE <u>CTL P</u>	COMPL ROJEC	 ETED : I NO : 2	02-20-	23					
2005FFE F n: 904.0 feet Boring Depth : 4.0 fe : 39.828151 Station : de -85.797417 Offset : Line : ER:	et	Boring Rig Typ Casing	be Diamete	: <mark>B-57</mark>			CTL P	ROJEC	TNO : 2							
n: 904.0 feet Boring Depth : 4.0 fe : 39.828151 Station : de85.797417 Offset : Line : ER: ⊻ Encountered at ¥ At co	et	Boring Rig Typ Casing	be Diamete	: <mark>B-57</mark>						22050	123IN					
n: 904.0 feet Boring Depth : 4.0 fe : 39.828151 Station : de85.797417 Offset : Line : ER: ⊻ Encountered at ¥ At co	et	Boring Rig Typ Casing	be Diamete	: <mark>B-57</mark>												
ER: ⊻ Encountered at <u></u> ¥ At co		Rig Typ Casing	be Diamete	: <mark>B-57</mark>		Hammer : <u>Automatic</u> Hammer Efficiency84.4										
de <u>-85.797417</u>		Casing	Diamete													
ER: 모 Encountered at <u></u> 또 At co	ompletion <u></u>	-		r:3.25				er/Inspeo perature	ctor : <u>E</u> • :40							
	mpletion		ize	:				ther		inny						
SOIL/MATERIAL DESCRIPTION										-						
		Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)		terber Limits					
		De	Sa Nu	SP	SF	Re	Ĕŭ	°ĽŠ	ລັບັ	LL	PL	PI				
ASPHALT CONCRETE (12")		1.0														
SAND AND GRAVEL BASE (12")	ľ a	.ª 2.0														
Brown, Moist, CLAY LOAM A-4 (3), Lab 4			ST-1			100	22.1	124.9		25	17	8				
Bottom of Boring at 4.0 feet	Y	4.0														
Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.																
CTL Engineering, Inc. Phone: 317-295-8650	HSA - Hollo SFA - Solid RC - Rock MD - Mud WD - Wasl	w Stem Flight A Coring Drilling n Drilling	Auger luger	SS - ST - CR - BS - AC -	 Split Shell Rock Bag Auge 	Spoor by Tub Core Sampl er Cutt	n Samp be Sam Samp le ings	ole * nple LL le PL PI DC	- Han - Liqu - Plas - Plas CP - Dyn	d Pen iid Lim stic Lin sticity I amic (etrome it nit ndex Cone	eter				
	Brown, Moist, CLAY LOAM A-4 (3), Lab 4 Bottom of Boring at 4.0 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.	SAND AND GRAVEL BASE (12") Brown, Moist, CLAY LOAM A-4 (3), Lab 4 Bottom of Boring at 4.0 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. Service patch CTL Engineering, Inc. Phone: 317-295-8650 CTL Engineering, Inc. Phone: 317-295-8650	ASPHALT CONCRETE (12") SAND AND GRAVEL BASE (12") Brown, Moist, CLAY LOAM A-4 (3), Lab 4 Bottom of Boring at 4.0 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. CTL Engineering, Inc. Phone: 317-295-8650 Phone Wash Drilling WD - Wash Drilling	ASPHALT CONCRETE (12") SAND AND GRAVEL BASE (12") Brown, Moist, CLAY LOAM A-4 (3), Lab 4 Bottom of Boring at 4.0 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. ST-1 BORING METHOD HSA - Hollow Stem Auger SFA - Solid Flight Auger RC - Rock Coring MD - Mud Drilling WD - Wash Drilling	ASPHALT CONCRETE (12") 1.0 1.0 SAND AND GRAVEL BASE (12") 2.0 5T-1 Brown, Moist, CLAY LOAM 4.0 ST-1 A4 (3), Lab 4 4.0 ST-1 Bottom of Boring at 4.0 feet 4.0 ST-1 Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. 4.0 ST-1 Kenne Stema	ASPHALT CONCRETE (12") I.0 SAND AND GRAVEL BASE (12") SAND AND GRAVEL BASE (12") 2.0 Brown, Moist, CLAY LOAM 4.0 A-4 (3), Lab 4 4.0 Bottom of Boring at 4.0 feet 5T-1 Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. 5T-1 Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. 4.0 ST-1 ST-1 HSA - Hollow Stem Auger SFA - Solid Flight Auger RC - Rock Coring MD - Mud Drilling MD - Mud Drilling MD - Wash Drilling MC - Auger ST - Shell	ASPHALT CONCRETE (12") 1.0 0 0 0 SAND AND GRAVEL BASE (12") 1.0 2.0 57.1 100 Brown, Moist, CLAY LOAM 4.0 ST-1 100 100 Bottom of Boring at 4.0 feet 4.0 ST-1 100 100 Bottom of Boring at 4.0 feet 4.0 ST-1 100 100 Concrete patch. ST-1 ST-1 ST-1 100 CTL Engineering, Inc. Phone: 317-295-8650 ST-1 100	ASPHALT CONCRETE (12') 1.0 1.0 1.0 1.0 SAND AND GRAVEL BASE (12') 2.0 2.0 0 2.0 Brown, Moist, CLAY LOAM 4.0 ST-1 100 22.1 Bottom of Boring at 4.0 feet 4.0 ST-1 100 22.1 Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. 4.0 ST-1 100 22.1 CTL Engineering, Inc. Phone: 317-295-8650 HSA - Hollow Stem Auger ST - Sold Flight Auger ST -	ASPHALT CONCRETE (12") 1.0 SAND AND GRAVEL BASE (12") 2.0 Brown, Moist, CLAY LOAM	ASPHALT CONCRETE (12") SAND AND GRAVEL BASE (12") Brown, Moist, CLAY LOAM A4 (3), Lab 4 Bottom of Boring at 4.0 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. ST-1 DEDRING METHOD SAMPLING METHOD SAMPLING METHOD SAMPLING METHOD SAMPLING METHOD CTL Engineering, Inc. Phone: 317-295-8650 D MD MD Mud Drilling K A A A A A A A A A A A A	ASPHALT CONCRETE (12") ASAND AND GRAVEL BASE (12") Brown, Moist, CLAY LOAM A-4 (3), Lab 4 Botim of Boring at 4.0 feet Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch. ST-1 BORING METHOD CTL Engineering, Inc. Phone: 317-295-8650 BORING METHOD CTL Engineering, Inc. Phone: 317-295-8650 BORING METHOD AC AUGE CURRENT ST Softey Tube Sample	ASPHALT CONCRETE (12") 1.0 SAND AND GRAVEL BASE (12") 2.0 Brown, Moist, CLAY LOAM A-4 (3), Lab 4 5T-1 Bottom of Boring at 4.0 feet 5T-1 Bottom of Boring at 4.0 feet 4.0 Bottom of Boring at 4.0 feet 4.0 Bottom of Boring at 4.0 feet 5T-1 Bottom of Boring at 4.0 feet 5T-1 Boring backfilled in accordance with INDOT requirmembrs and pavement restored with concrete patch. 100 22.1 124.9 25 17 Bottom of Boring at 4.0 feet 5T-1 5T-1 100 22.1 124.9 25 17 Bottom of Boring at 4.0 feet 5T-1 5T-1 100 22.1 124.9 25 17 Bottom of Boring at 4.0 feet 5T-1 5T-1 100 22.1 124.9 10 124.9 10 <td< td=""></td<>				

		TES	T BOF	RING	RECO	ORD								
CLIEN	Г :	American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 4	
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Г	: 1	0	F	1
ROUTE	ENO.	: Fortville Pike and CR 300 N	COUNTY	: Han	cock				DATE	STARTI	ED : (02-20-	-23	
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	ETED : _	02-20-	-23	
DES N	0.	: 2005FFE I	PROJECT	<u>NO:</u>					CTL P	ROJEC	Г NO : :	22050	123IN	D
Boring	Elevatio	on: 904.0 feet Boring Depth: 7.5 fe			Method	:HSA			Ham	mer	:Au	utomat	tic	
		e: <u>39.827500</u> Station :		Rig Ty	ре	: B- 57	' Truck				ciency <u>84</u>			
	Longitu	de <u>-85.796061</u> Offset : Line :) Diamete	r: <u>3.25</u>	" ID			er/Inspec perature	ctor : <u>E</u> :50			
		Line			lize				Wea	-		unny		
GROU		TER: $ abla$ Encountered at Dry $ abla$ At co	ompletion <u>D</u>)ry						No.	L Caved	in at <u>5</u>	.3 feet	<u>t_</u>
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION	I	Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)		tterber Limits	
Ξ	۵ŭ		\boxtimes	<u>50</u>	ůź	IS	0 N	Ř	∑ŭ	Ĕ≥	ΞŬ	LL	PL	PI
903.0_		ASPHALT CONCRETE (12")		1.0										
902.3_	- \	SAND AND GRAVEL (8") Brown, Moist, Medium Stiff, SANDY CLAY	 	1.7	SS-1	11 5	8	100	14.4					
004 5	~ - 1	LOAM				3			14.4					
901.5_	2.5	A-6, As Lab 1	 	/ [·] _2.5										
	ΞŅ		+/+	(4)	SS-2	3	8	100	24.8					
	-/^					4	Ũ		21.0					
Ĕ	5.0	Brown, Moist, Medium Stiff, SILTY CLAY LOAM A-6, As Lab 2	+ + + + + # # +	+++++++++++++++++++++++++++++++++++++++	SS-3	3 3 4	7	67	15.0					
896.5_	7.5	Bottom of Boring at 7.5 feet	++++ ++	4 + + 7.5	SS-4	3 3 3	6	83	20.7					
	- - - 10.0_	Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.	r											
	-													
	12.5 15.0													
		<u> </u>												
				NG METH					ETHOD		ABBR			
_		CTL Engineering, Inc.	HSA - Hol SFA - Soli						n Samp be Sam				etrome nit	eter
	TL	Phone: 317-295-8650	RC - Roo	k Coring		CR	- Rocł	Core	Sampl	e PL	Plas	stic Lin	nit	
ENGINE	ERING볼	- 1-110He. 317-283-0030	MD - Muo WD - Wa		r		- Bag - Auge			PI	- Plas CP - Dyn			
			HA - Har		J				ample				eter Te	est

HA - Hand Auger

		TES	T BOR	NG I	RECO	DRD									
CLIEN	T :	American Structurepoint, Inc.						_	BORIN	IG NO.	:	RB	- 5		
PROJE	СТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Т	:1	0	F	1	
ROUTE	E NO.	: Fortville Pike and CR 300 N	COUNTY	: Han	cock				DATE	STARTE	ED :	02-20	-23		
LOCAT	ION	Greenfield, Indiana						_	DATE	COMPL	ETED :	02-20	-23		
DES N	0.	: 2005FFE	PROJECT N	D:					CTL P	ROJECT	ΓΝΟ :	22050	123IN	D	
Boring	Elevatio	on: 909.0 feet Boring Depth: 15.0 f	eet	Boring	Method	: HSA			Ham	mer	:Aı	utoma	tic		
		e: 39.828248 Station :		Rig Ty	be	: B-57	Truck				ciency84				
	Longitu	de <u>-85.796578</u> Offset : Line :			Diamete	er: 3.25"	ID			er/Inspec	ctor : <u>El</u>	<u>)</u> ° F			
		Line		Core S		:			Wea	•		unny			
GROUI	NDWAT	FER: $ar{ u}$ Encountered at Dry $ar{ u}$ At co	ompletion <u>Dr</u>	Z						No.	L Caved	in at <u>1</u>	3.2 fe	et_	
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION	I	Stratum Depth	Sample Number	T per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)		tterbe Limits		
Str Ele	Sal De			Str	Sal	SPT	SP	Re	နိုင်	Ve	чо	LL	PL	PI	
908.0	-	ASPHALT CONCRETE (12")		1.0											
907.5		CEMENT CONCRETE (6")		1.5	SS-1	50/3"		17	5.8						
	_	(Higly fractured and deteriorated) SAND AND GRAVEL BASE (12")		 											
906.5_	2.5	Λ		2.5		5									
])				SS-2	5	8	83	9.4			19	15	4	
	-	Brown and Gray, Moist, Medium Stiff to So	ft,			3									
	5.0	A-4, Lab 3			SS-3	4	4	83	43.5						
		(Sand layer with decomposed wood fragme encountered from 3.5 to 4.5 feet druing drill	ent		-	2									
903.0_	+			6.0											
	7.5		+++++++++++++++++++++++++++++++++++++++		SS-4	2 3 4	7	100	25.0						
	10.0	Brown, Moist, Medium Stiff to Soft, SILTY CLAY LOAM A-6, As Lab 2	++++ + + + + +++ ++++		SS-5	2 2 3	5	100	27.3						
897.0_	-	L		12.0											
	12.5_	[Τ											
<u>i</u>		Brown, Moist, Stiff, LOAM (TILL) A-4, As Lab 5			SS-6	4 6	14	100	11.2						
894.0_	15.0_/	Bottom of Boring at 15.0 feet		15.0		8									
	-	Boring backfilled in accordance with INDOT requirements and pavement restored with concrete patch.	-												
	17.5_														
	-														
	20.0_														
		<u> </u>													
			-		-	-		-	THOD		ABBR				
_		CTL Engineering, Inc.	HSA - Hollo SFA - Solid		-				n Samp be Sam		- Han - Liqu			eler	
	TL	Phone: 317-295-8650	RC - Rock	Coring	5	CR -	Rock	Core	Core Sample PL - Plastic Limit						
ENGINE	ERING Z		MD - Mud WD - Wash	n Drilling	1	AC -	Auge				- Plas CP - Dyn Pon	amic		ost	

		TES	T BOR	ING	RECO	DRD								
CLIEN	т	: American Structurepoint, Inc.							BORIN	NG NO.	:	RB	- 6	
PROJE	ЕСТ	: Fortville Pike & CR 300N Roundabout							SHEE	т	: 1	0	F	1
ROUT	E NO.	: Fortville Pike and CR 300 N	COUNTY	: Han	cock				DATE	START	ED :	02-20	-23	
LOCA	ΓΙΟΝ	: Greenfield, Indiana						_	DATE	COMPL	ETED :	02-20	-23	
DES N	0.	: 2005FFE	PROJECT N	0:					ÇTL P	ROJEC	TNO:	22050)123IN	ID
		on: <u>908.0 feet</u> Boring Depth : <u>15.0 t</u>		Boring	Method	: <u>HSA</u>			Ham	nmer	: <u>A</u> t	utoma	tic	
		e : <u>39.828072</u> Station :		Rig Ty	ре	: <u>B-57</u>	' Truck	(ciency84			
	Longitu	Ide <u>-85.796236</u> Offset : Line :		Casing	Diamete	er : <u>3.25</u>	" ID			er/inspeo perature	ctor : <u>El</u> e :50)° F		
				Core S	ize	:				ather	:Sı	unny		
GROU	NDWA	TER: ∇ Encountered at Dry ∇ At c	ompletion <u>Dr</u>	У	1	1	1	1		<u> </u>	Caved	in at <u>1</u>	13.0 fe	et_
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION	4	Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)		tterbe Limits	
1 1 1 1 1 1 1	Desa			<u>D</u> <u></u>	Sa Nu	R	S	Re	ĕΰ	°₽š	Ъõ	LL	PL	PI
907.0	-	ASPHALT CONCRETE (12")		1.0										
906.5	1 1	SAND AND GRAVEL (6")	· · · · · · · · · · · · · · · · · · ·	1.5		8								
	2.5			*	SS-1	6 5	11	83	21.2					
		Brown, Moist, Medium Stiff to Stiff, SILTY	(+)A	4		3								
	-/	A-6, As Lab 2	<i># + + +</i>	*	SS-2	3	7	100	13.3					
	†		++++	4]		5								
903.0	5.0		A	<u>≁</u> 5.0	SS-3	6	14	83	12.0					
		-				8								
	7.5_				SS-4	5 8 11	19	100	11.4					
	-\ 10.0 - -	Brown, Slightly Moist, Stiff to Very Stiff, LO (TILL) A-4, As Lab 5	AM		SS-5	5 9 13	22	100	10.2					
893.5	12.5_ 12.5_			14.5	SS-6	6 10	23	100	7.0					
893.0	15.0	Brown, Slightly Moist, Medium Dense, GRAVELLY SAND (Visual)		2. 15.0		13								
	-	Bottom of Boring at 15.0 feet												
	- - 17.5_ - -	Boring backfilled in accordance with INDO requirements and pavement restored with concrete patch.	г											
	-													
	20.0_													
												E\// ^ -		
_			HSA - Hollo	G METH	-	-		-	ETHOD n Sam		ABBR - Han			
	TL FERING SE	CTL Engineering, Inc. Phone: 317-295-8650	SFA - Solic RC - Rock MD - Mud WD - Was	l Flight A c Coring Drilling h Drilling	luger	ST CR BS AC	- Shel - Rocl - Bag - Auge	by Tul k Core Samp er Cutt	be San Samp le	nple LL le PL PI D(- Liqu - Plas - Plas CP - Dyn	iid Lin stic Lir sticity amic	nit mit Index	

		TES	T BOR	ING	RECO	DRD								
CLIEN	т	American Structurepoint, Inc.						_	BORI	NG NO.	:	RB	- 7	
PROJE	ЕСТ	Fortville Pike & CR 300N Roundabout						_	SHEE	Т	:1	0	F	1
ROUT	E NO.	Fortville Pike and CR 300 N	COUNTY	: Han	cock			_	DATE	STARTE	ED :_	02-22	-23	
LOCAT	ΓΙΟΝ	: <u>Greenfield, Indiana</u>						_	DATE	COMPL	ETED : _	02-22	-23	
DES N	0.	: 2005FFE	PROJECT N	0:					CTL P	ROJECT	ΓΝΟ :	22050	123IN	ID
		Dn: 912.0 feet Boring Depth : 15.0 f	feet	Boring	Method	: <u>HSA</u>			-	nmer		utoma	tic	
		e : 39.828329 Station :		Rig Ty	ре	: <u>B-57</u>	Truck			nmer Effi er/Inspec				
	Longitu	Line :		Casing	Diamete	er : <u>3.25</u>	" ID			perature		5° F		
				Core S	ize	:			Wea	ather	:Ra			
GROU	NDWA ⁻	TER: $\overline{\Psi}$ Encountered at Dry $\overline{\Psi}$ At co	ompletion <u>Dr</u>	<u>У</u>			1	1			Caved	in at <u>6</u>	6.0 fee	<u>t</u>
Stratum Elevation	Sample Depth	SOIL/MATERIAL DESCRIPTION	I	Stratum Depth	Sample Number	SPT per 6"	SPT per 12"	Recovery (%)	Moisture Content (%)	Total Unit Weight (pcf)	Unconfined Compression (ksf)		tterbe Limits	
	Sa				Sa Nu	SP	SP	Re	Во Со	Υ ^ο	ာ်ပိ	LL	PL	PI
911.5_		TOPSOIL (5.5")		_0.5		1								
			* * + + + +	4	SS-1	1 2 1	3	67	20.7					
	2.5_	Brown, Moist, Very Soft to Medium Stiff, SI CLAY LOAM A-6, As Lab 2	LTY +++++	* + + +	BS-1 SS-2	2 1 3 2	4	100 78	16.8 15.0	129.4		33	17	16
906.5_	5.0		+ + + +	+ + + 5.5	SS-3	24	6	78	27.6					
<u>ظ</u>	7.5				SS-4	4 5 9	14	100	12.5					
	- 10.0	Brown, Moist to Slightly Moist, Stiff to Hard LOAM (TILL) A-4 (1), Lab 5	,		SS-5	9 15 17	32	100	9.3			20	14	6
898.0_	- 12.5_ - -	Brown, Slightly Moist, Very Dense, SAND		<u>.</u> 14.0	SS-6	23 29	52	100	8.6					
897.0_	15.0	Silt (Visual) Bottom of Boring at 15.0 feet	with			23	52		0.0					
	-	Boring backfilled in accordance with INDOT requirements.	r											
	17.5_													
	20.0_													
		·	BORIN	G METH	IOD	SA	AMPLI	ng me	THOD)	ABBR	EVIA	L FIONS	
_	, ,		HSA - Hollo		-				n Sam				etrom	eter
ENGINE	TERING Z	CTL Engineering, Inc. Phone: 317-295-8650	SFA - Solic RC - Rock MD - Mud WD - Was	c Coring Drilling h Drilling	-	CR BS AC		c Core Samp er Cutt	ings	le PL PI DC	- Plas - Plas Plas	stic Lir sticity amic (nit Index	est

APPENDIX C

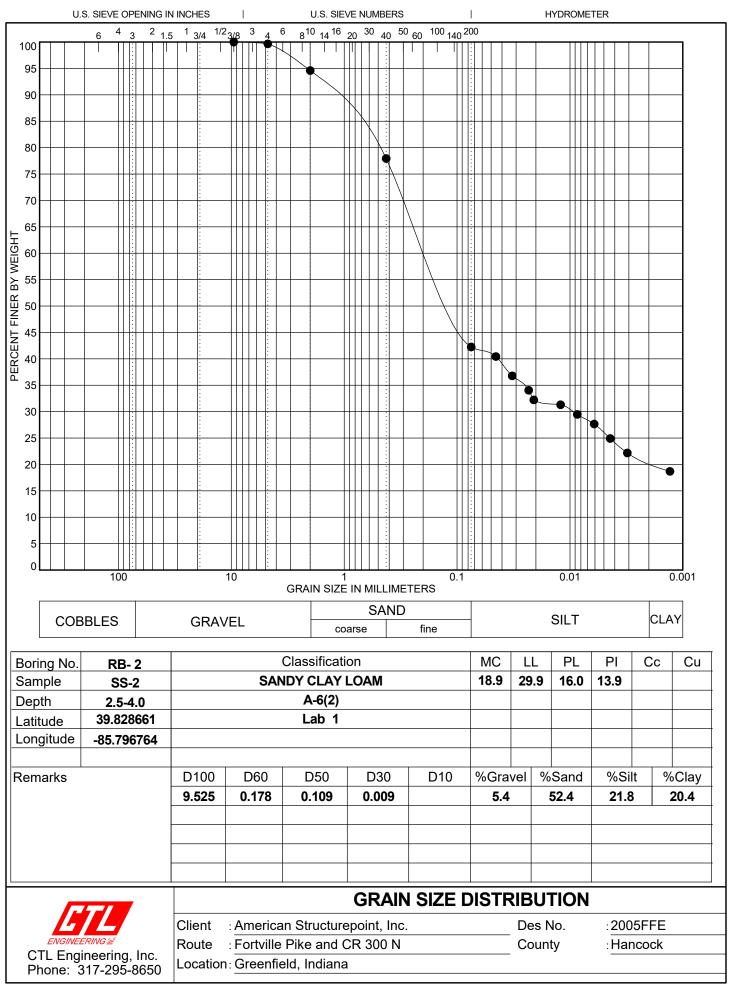
LABORATORY TESTING

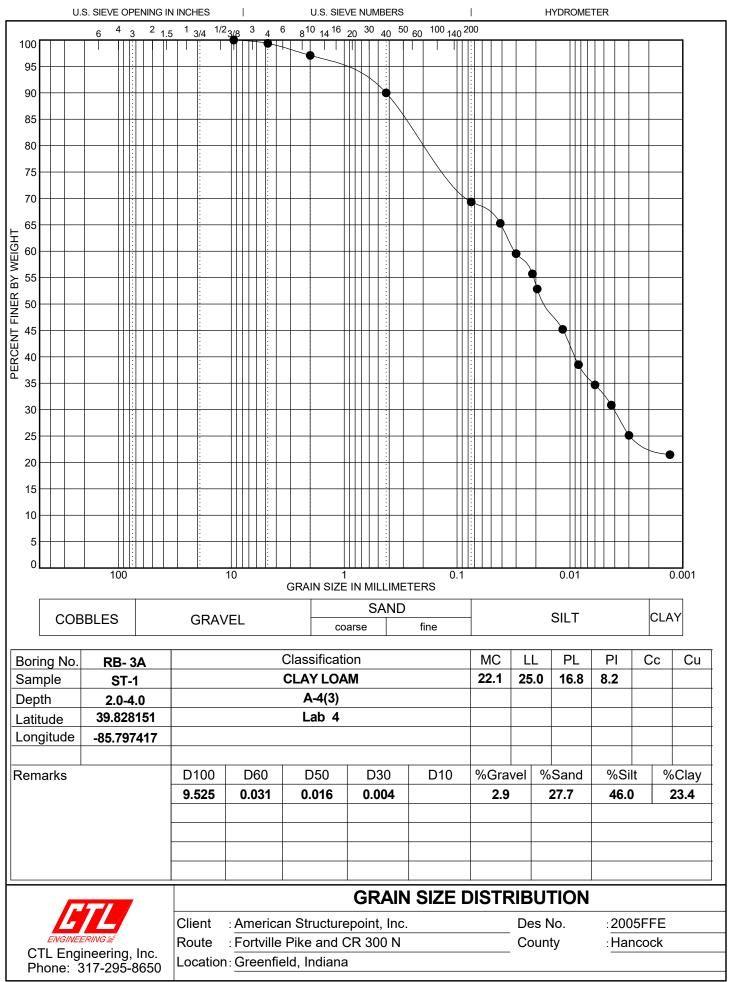
Summary of Classification Test Results Grain Size Distribution Curves Unconfined Compressive Strength Test Results Standard Proctor Test Results Resilient Modulus Test Results Topsoil Analysis Results Specific Gravity Test Results Summary of Special Laboratory Test Results

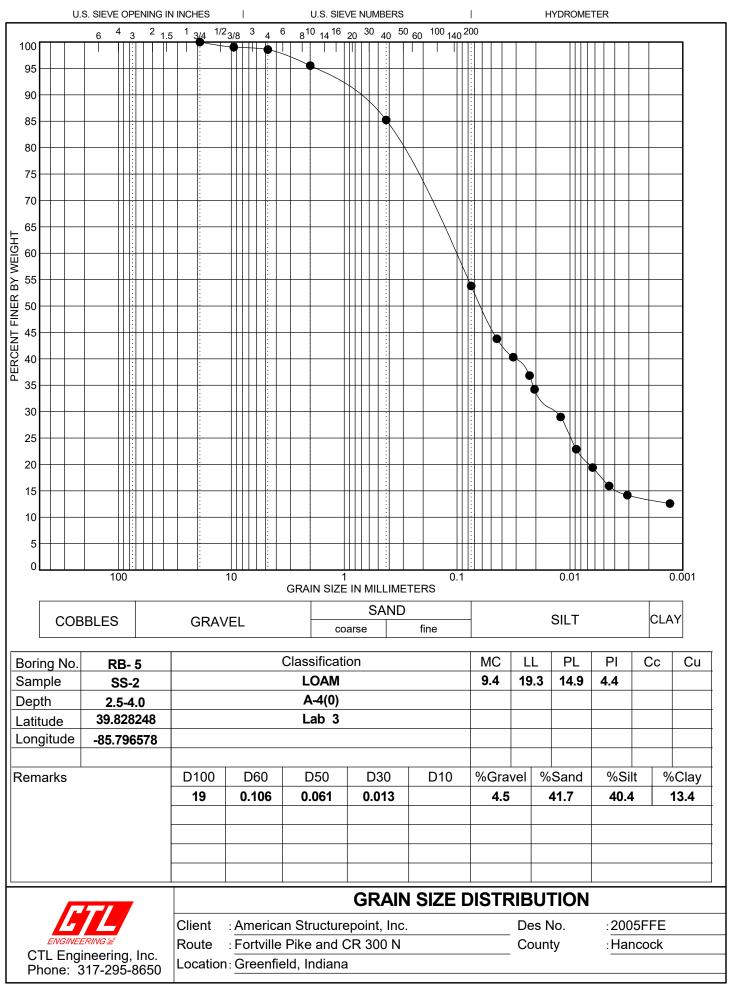
												Sheet 1	of 1
Lab No.	Boring No.	Sample No.	Depth (feet)	Textural Classification	AASHTO Classification	Gravel %	Sand %	Silt %	Clay %	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Moisture %
Lab 1	RB- 2	SS-2	2.5-4.0	SANDY CLAY LOAM	A-6 (2)	5.4	52.4	21.8	20.4	29.9	16.0	13.9	18.9
Lab 2	RB- 7	BS-1	0.0-5.0	SILTY CLAY LOAM	A-6 (12)	3.2	11.3	59.5	25.9	32.9	17.2	15.7	16.8
Lab 3	RB- 5	SS-2	2.5-4.0	LOAM	A-4 (0)	4.5	41.7	40.4	13.4	19.3	14.9	4.4	9.4
Lab 4	RB- 3A	ST-1	2.0-4.0	CLAY LOAM	A-4 (3)	2.9	27.7	46.0	23.4	25.0	16.8	8.2	22.1
Lab 5	RB- 7	SS-5	8.5-10.0	LOAM	A-4 (1)	10.9	31.2	39.8	18.1	20.3	14.3	6.0	9.3

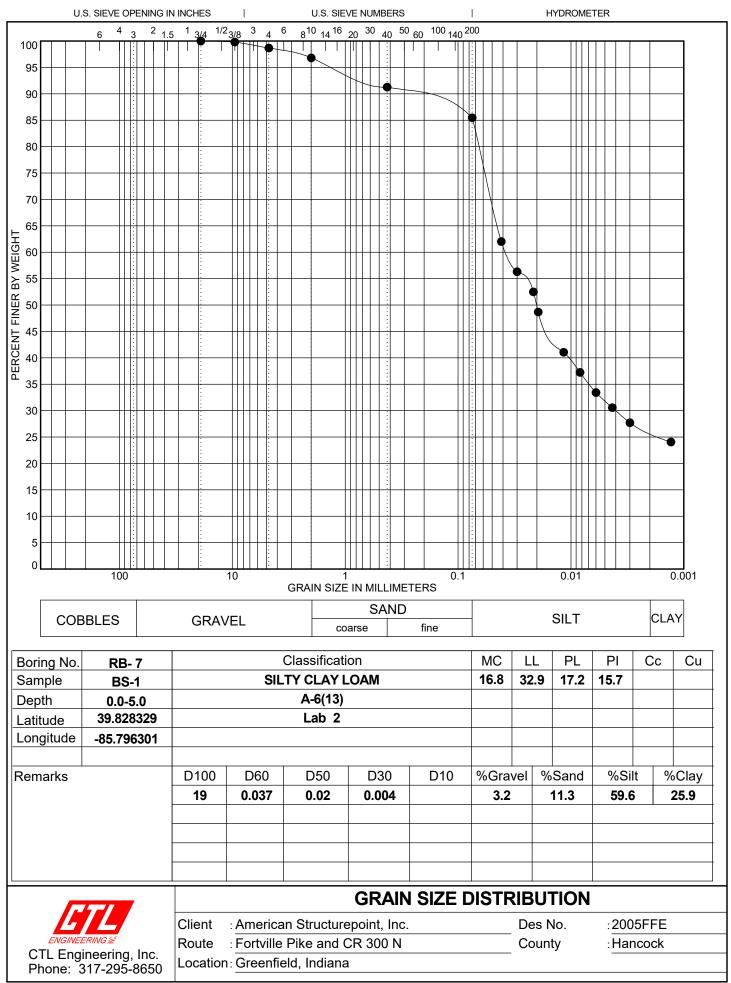
SUMMARY OF CLASSIFICATION TEST RESULTS

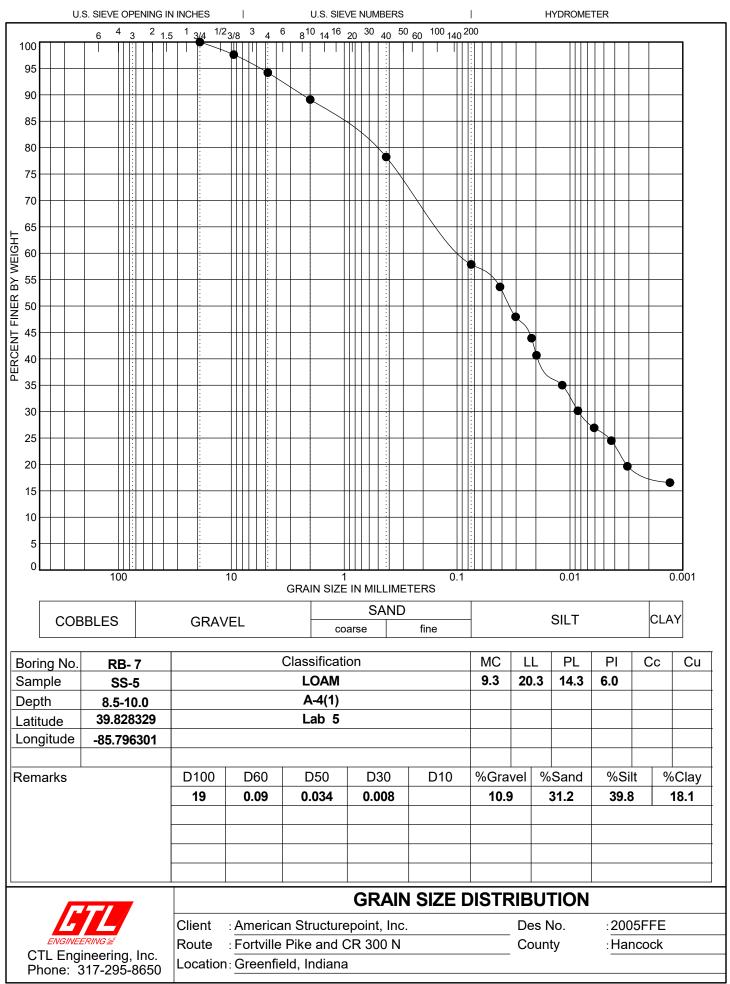
Des. No.	:2005FFE
Project Typ	e:Fortville F
Route	:Fortville F

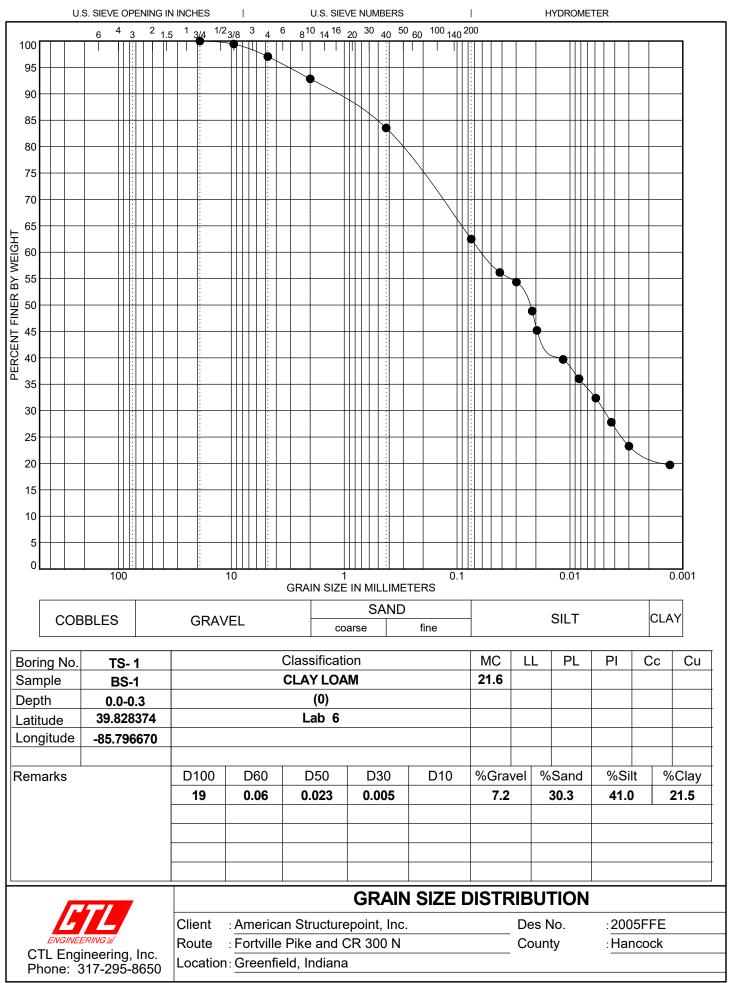

ct Type: Fortville Pike & CR 300N Roundabout Fortville Pike and CR 300 N

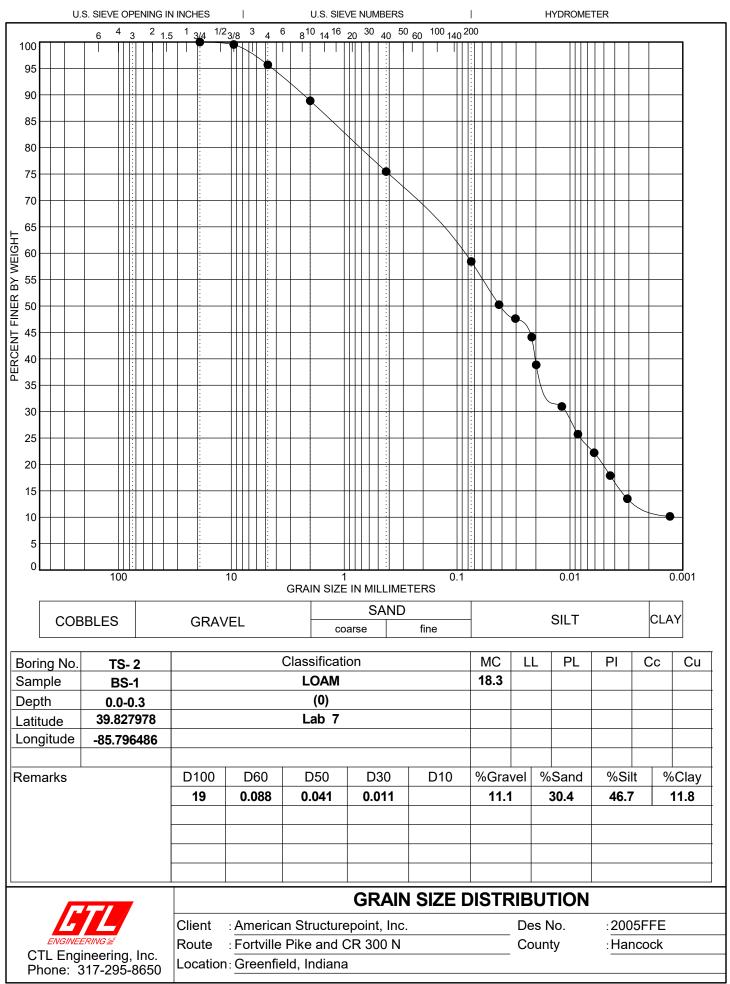

Location : Greenfield, Indiana

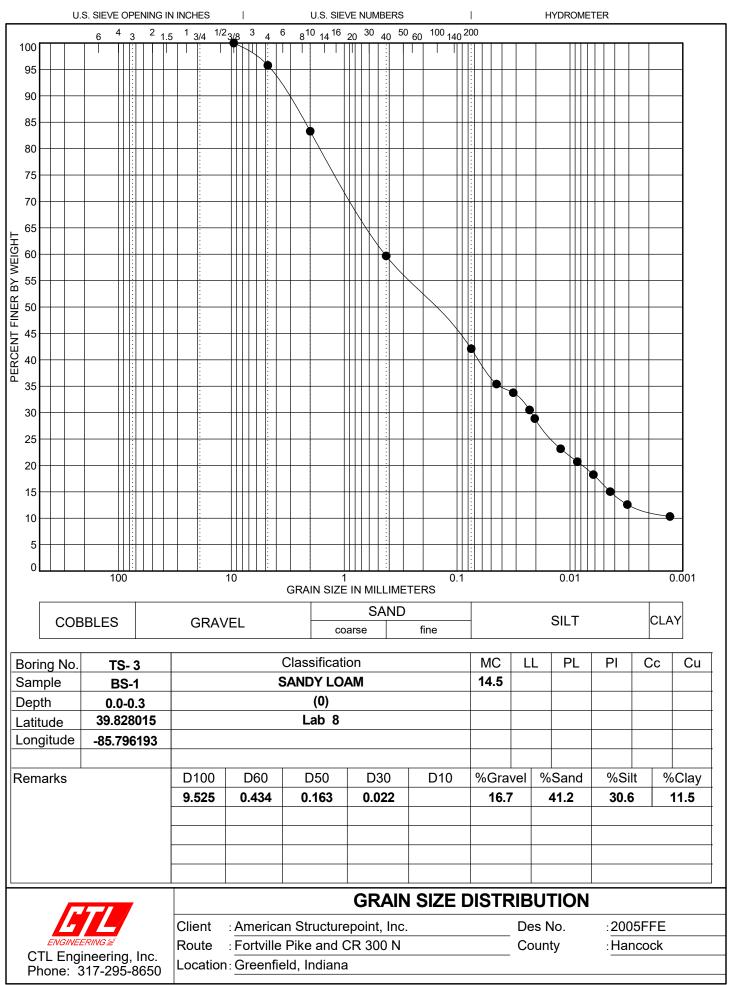

Project No. County

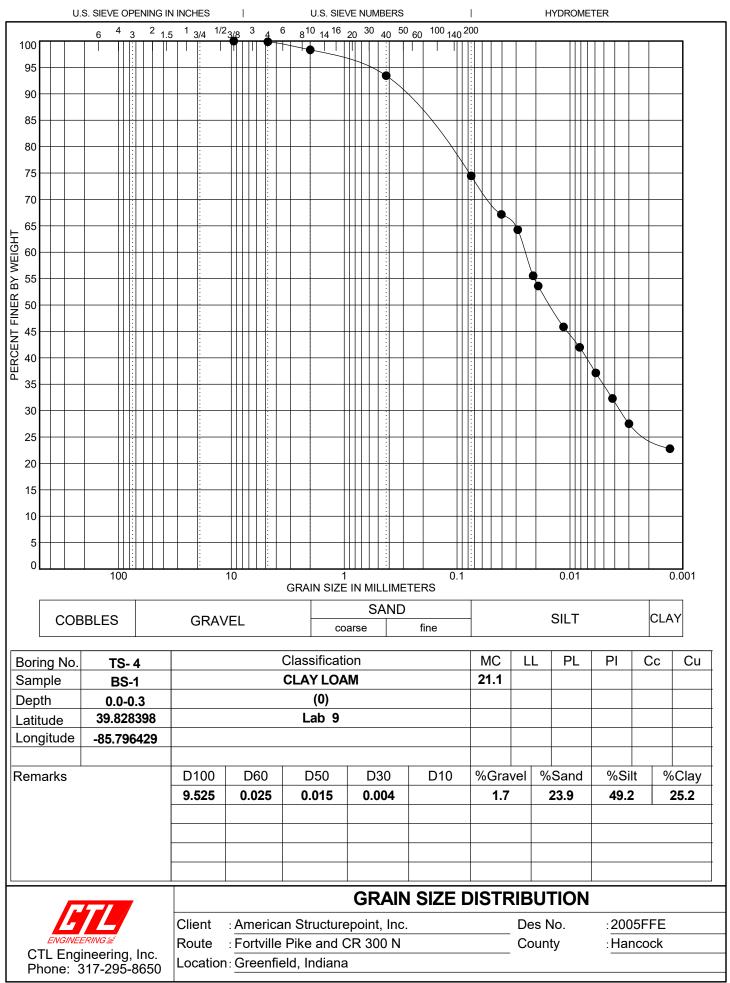

:Hancock

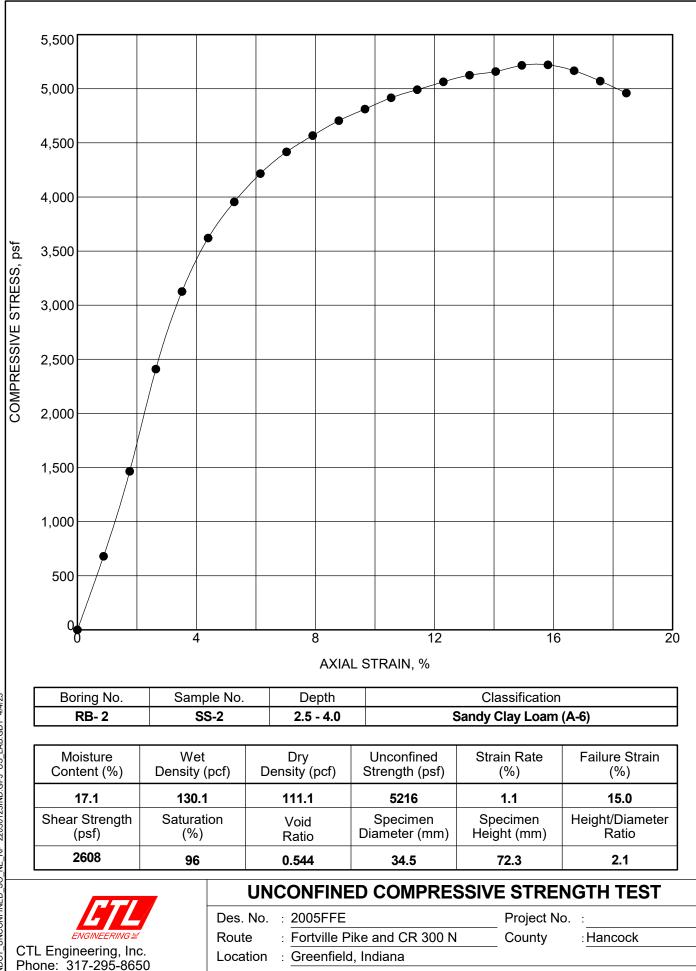

CTL Proj. No.: 22050123IND



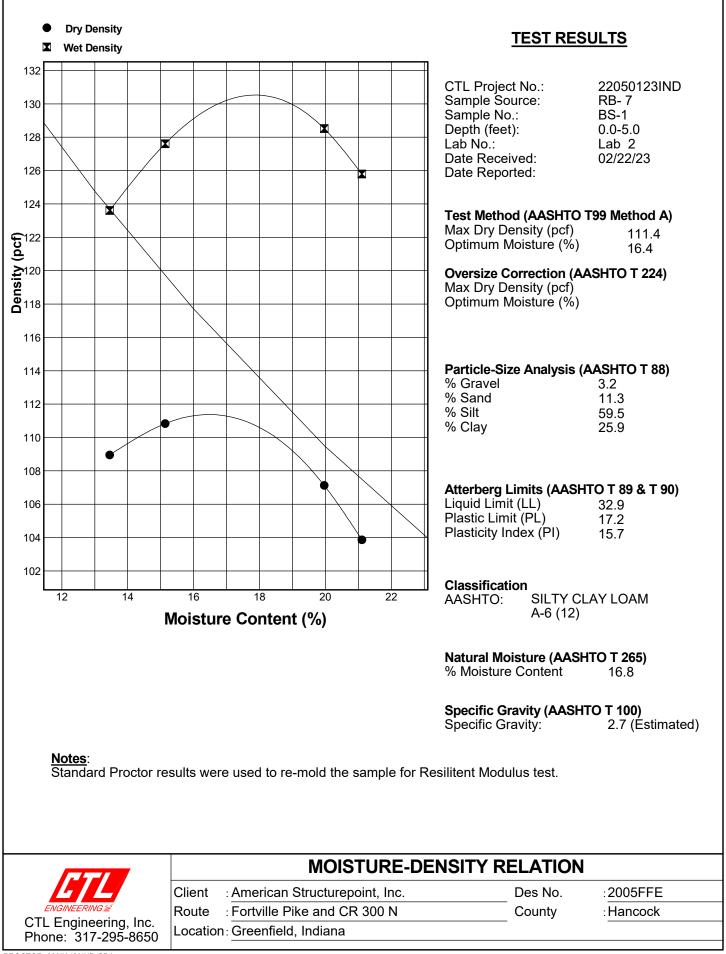








INDOT_GRADATION_LL 22050123IND.GPJ



INDOT_GRADATION_LL 22050123IND.GPJ

NDOT_UNCONFINED_SO_NE_RP_22050123IND.GPJ_US_LAB.GDT_4/4/23

Resilient Modulus of Soil (AASHTO T307)

Client:	American Structurepoint, Inc.
Project Name:	Fortville Pike & CR 300N Roundabout; Des No. 2005FFE
Location:	Greenfield, IN
CTL Project. No.:	22050123IND
Sample No.:	ST-1
Sample Location .:	RB-3
Sample Depth:	2.0' - 4.0'
Soil Description:	Clay Loam [A-4 (3)]
Sample Type	Type II

Specimen Information:

		Diameter (in)	Height (in)	Mass (gm)	Height to Diameter Ratio	Area (in ²)	Volume (in ³)
		2.840	6.058				
		2.857	6.042				
		2.853	6.032				
Aver	rage	2.850	6.044	1266.5	2.12	6.38	38.56

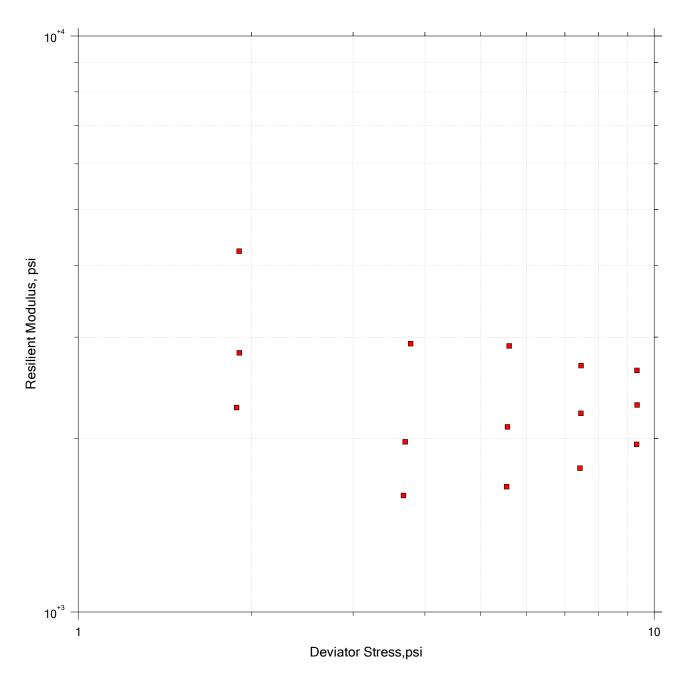
Moisture Data & Specimen Properties

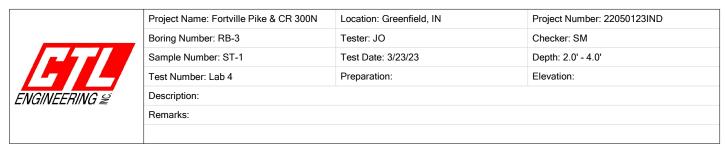
Wet Soil mass with tare (gm)	139.90
Dry Soil mass with tare (gm)	120.49
Tare mass (gm)	32.60
Moisture %	22.08
Natural Wet Density (lbs/ft ³)	124.86

Liquid Limit	25
Plastic Limit	17
Plasticity Index	8

Permanent Strain:

	(%)
After Conditioning Sequence	0.59
At test Completion	2.21


Remarks / Notes:



Summary Data

Mr = 2999.9 * Sd^{-0.162}

r = -0.3651

Summary Data

Confining Stress S3 psi	Nom. Max. Deviator Stress psi	Mean Deviator Stress psi	Std. Dev. Deviator Stress psi	Mean Bulk Stress psi	Mean Resilient Strain %	Std. Dev. Resilient Strain %	Mean Resilient Modulus psi	Std. Dev. Resilient Modulus psi
5.976	2.000	1.903	0.0067	19.83	0.04	0.00	4229.7	46.327
5.932	4.000	3.779	0.0092	21.58	0.12	0.00	2923.9	113.17
5.976	6.000	5.604	0.0075	23.53	0.17	0.00	2897.3	14.324
5.950	8.000	7.465	0.0172	25.32	0.25	0.00	2677.2	5.7678
5.931	10.00	9.337	0.0088	27.13	0.32	0.00	2626.1	9.6997
3.896	2.000	1.905	0.0073	13.59	0.06	0.00	2818.9	27.364
3.958	4.000	3.696	0.0098	15.57	0.17	0.00	1975.2	11.288
3.937	6.000	5.565	0.0120	17.38	0.24	0.00	2095.9	7.5708
3.923	8.000	7.463	0.0095	19.23	0.30	0.00	2213.5	2.6202
3.916	10.00	9.342	0.0087	21.09	0.36	0.00	2288.3	7.8147
1.923	2.000	1.883	0.0042	7.651	0.07	0.00	2264.1	19.183
1.878	4.000	3.670	0.0094	9.304	0.20	0.01	1593.0	66.474
1.905	6.000	5.544	0.0145	11.26	0.30	0.00	1649.9	7.2256
1.876	8.000	7.434	0.0176	13.06	0.37	0.00	1777.5	11.603
1.889	10.00	9.325	0.0085	14.99	0.42	0.00	1955.0	2.6410

	Project Name: Fortville Pike & CR 300N	Location: Greenfield, IN	Project Number: 22050123IND
	Boring Number: RB-3	Tester: JO	Checker: SM
	Sample Number: ST-1	Test Date: 3/23/23	Depth: 2.0' - 4.0'
	Test Number: Lab 4	Preparation:	Elevation:
	Description:		
	Remarks:		

Resilient Modulus of Soil (AASHTO T307)

Client:	American Structurepoint, Inc.
Project Name:	Fortville Pike & CR 300N Roundabout; Des No. 2005FFE
Location:	Greenfield, IN
CTL Project. No.:	22050123IND
Sample No.:	BS-1
Sample Location .:	RB-7
Sample Depth:	0' - 5.0'
Soil Description:	Silty Clay Loam [A-6 (12)]
Sample Type	Type II

Specimen Information:

	Diameter (in)	Height (in)	Mass (gm)	Height to Diameter Ratio	Area (in ²)	Volume (in ³)
	2.807	5.165				
	2.805	5.166				
	2.804	5.168				
Average	2.805	5.166	1087	1.84	6.18	31.93

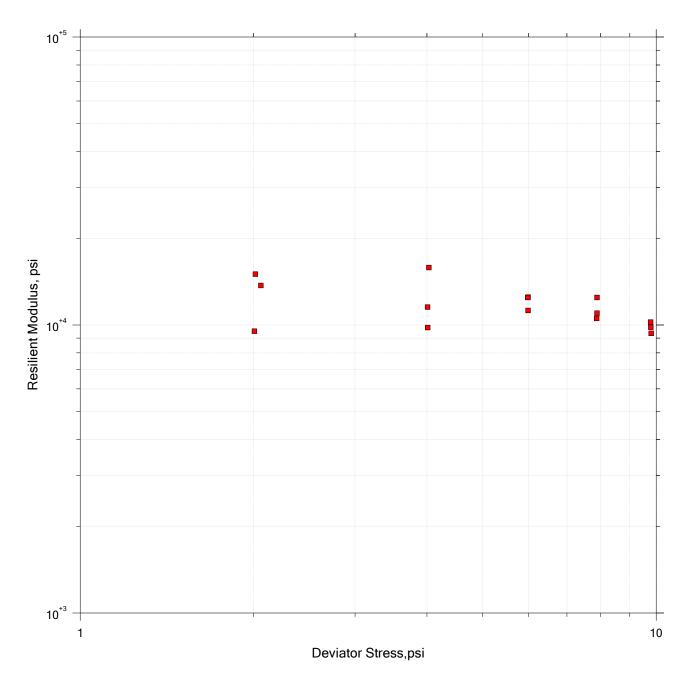
Moisture Data & Specimen Properties

Wet Soil mass with tare (gm)	136.60
Dry Soil mass with tare (gm)	121.64
Tare mass (gm)	32.50
Moisture %	16.78
Natural Wet Density (lbs/ft ³)	129.42

Liquid Limit	33
Plastic Limit	17
Plasticity Index	16

Permanent Strain:

	(%)
After Conditioning Sequence	0.07
At test Completion	0.11


Remarks / Notes:

Summary Data

Mr = 14160 * Sd^{-0.125}

r = -0.44024

	Project Name: Fortville Pike & CR 300N	Location: Greenfield, IN	Project Number: 22050123IND						
	Boring Number: RB-7	Tester: JO	Checker: SM						
	Sample Number: BS-1	Test Date: 3/28/23	Depth: 0' - 5.0'						
	Test Number: Lab 2	Preparation:	Elevation:						
ENGINEERING 😫	Description:								
	Remarks:								

Summary Data

Confining Stress S3 psi	Nom. Max. Deviator Stress psi	Mean Deviator Stress psi	Std. Dev. Deviator Stress psi	Mean Bulk Stress psi	Mean Resilient Strain %	Std. Dev. Resilient Strain %	Mean Resilient Modulus psi	Std. Dev. Resilient Modulus psi
5.861	2.000	2.059	0.0154	19.64	0.01	0.00	13715.	200.80
5.865	4.000	4.009	0.0276	21.60	0.03	0.00	11536.	112.59
5.912	6.000	5.994	0.0167	23.73	0.04	0.00	12490.	79.584
5.893	8.000	7.892	0.0040	25.57	0.06	0.00	12463.	30.926
5.917	10.00	9.806	0.0238	27.56	0.10	0.00	9359.9	20.261
3.885	2.000	2.015	0.0222	13.67	0.01	0.00	15014.	200.86
3.894	4.000	4.030	0.0274	15.71	0.02	0.00	15837.	211.31
3.900	6.000	5.983	0.0196	17.68	0.04	0.00	12467.	72.148
3.876	8.000	7.894	0.0174	19.52	0.07	0.00	10988.	50.798
3.876	10.00	9.785	0.0149	21.41	0.09	0.00	9827.4	31.002
1.912	2.000	2.007	0.0160	7.742	0.02	0.00	9515.3	223.11
1.856	4.000	4.013	0.0043	9.581	0.04	0.00	9798.4	39.686
1.918	6.000	5.991	0.0214	11.74	0.05	0.00	11232.	36.513
1.858	8.000	7.884	0.0047	13.46	0.07	0.00	10536.	34.864
1.928	10.00	9.778	0.0152	15.56	0.09	0.00	10230.	21.406

	Project Name: Fortville Pike & CR 300N	Location: Greenfield, IN	Project Number: 22050123IND
	Boring Number: RB-7	Tester: JO	Checker: SM
	Sample Number: BS-1	Test Date: 3/28/23	Depth: 0' - 5.0'
	Test Number: Lab 2	Preparation:	Elevation:
ENGINEERING 🖄	Description:		
	Remarks:		

INDIANA DEPARTMENT OF TRANSPORTATION OFFICE OF GEOTECHNICAL SERVICES

Summary of Existing Topsoil Test Results for use with Plant Growth Layer

Date: 4/4/2023

Des. No.: 2005FFE

Project: Fortville Pike & CR 300N Roundabout

Location: Hancock County, IN

									ANALYSI	5		
REF.		LOCATIO	N		AASHTO T 289	AASHTO T 88 and T 89	AASHTO T 267 and T 21**	Bray P-1 Equivalent	NCRRP 221, Chapt 7***			
Boring Log	Latitude	Longitude	Quardant	Tested Depth (inch)	рН	Gravel*	Sand	Silt Weight)	Clay	Organic Content (% by Wt)	Phosphorus (ppm)	Potassium (ppm)
TS-1	39.828374	-85.796670	NW	3	6.8	7	30	41	22	3.3	30	111
TS-2	39.827978	-85.796486	SW	3	6.7	11	30	47	12	3.6	48	119
TS-3	39.828015	-85.796193	SE	3	6.9	17	41	31	12	3.2	24	100
TS-4	39.828398	-85.796429	NE	3	6.8	2	24	49	25	2.9	25	97
		Acceptable	Ranges per	r 914.01 =	6.0 - 7.3	N/A	5 - 50%	30 - 80%	5 - 30%	3 - 10%**	20 - 80	105 - 250

* For informational purposes only

** In Davies, Gibson, Knox, Pike Posey, and Vanderburgh Counties, AASHTO T 21 shall also be performed. Acceptable range is 4 - 10%

*** North Central Regional Research Publication 221, Chapter 7

Note: All existing topsoil test results presented herein are for information only.

Rev 11/17

CTL Engineering, Inc. Specific Gravity ASTM D 854 / AASHTO T 100 Method B

Client: American Structurepoint, Inc. Project: Fortville Pike & CR 300N Roundabout Project #: 22050123IND Test Number: Lab 4 Date: 4/6/2023 Tech: JO Reviewed by: PS

Clay Loam [A-4 (3)]
99.37
None
86.21
360.70
21.0

Sample ID	Specific Gravity (20°C)
RB-3_ST-1_2'-4'	2.716

			Wet	Dry				Max Drv	Optimum		Resilient						eet 1 of 2 Calcium	1
Boring	Sample	Depth	Density (pcf)	Density (pcf)	Qu (ksf)	c (ksf)	Moisture %	Density (pcf)	Moisture %	@ Opt.	Modulus +2% of Opt	In-situ	Sulfate (ppm)	Phosphorus (ppm)	Potassium (ppm)	LOI (%)	Carbonate (%)	рН
RB- 1	SS-1	1.0-2.5		u /			6.5			G -1								
RB- 1	SS-2	2.5-4.0					20.1											
RB- 1	SS-3	4.0-5.5					29.7											
RB- 1	SS-4	6.0-7.5					24.6											
RB- 2	SS-1	1.0-2.5					4.3											
RB- 2	SS-2	2.5-4.0	130.1	111.1	5.216	2.608	18.9											7.'
RB- 2	SS-3	4.0-5.5					15.9											
RB- 2	SS-4	6.0-7.5					17.6											
RB- 3	SS-1	1.0-2.5					17.3											
RB- 3	SS-2	2.5-4.0					26.2											
RB- 3	SS-3	4.0-5.5					29.5											
RB- 3	SS-4	6.0-7.5					27.5											
RB- 3A	ST-1	2.0-4.0	124.9	102.3			22.1					1,649	0					7.
RB- 4	SS-1	1.0-2.5					14.4											
RB- 4	SS-2	2.5-4.0					24.8											[
RB- 4	SS-3	4.0-5.5					15.0											
RB- 4	SS-4	6.0-7.5					20.7											
RB- 5	SS-1	1.0-1.3					5.8											
RB- 5	SS-2	2.5-4.0					9.4											7.
RB- 5	SS-3	4.0-5.5					43.5									8.1	2.9	
RB- 5	SS-4	6.0-7.5					25.0											
RB- 5	SS-5	8.5-10.0					27.3											
RB- 5	SS-6	13.5-15.0					11.2											
RB- 6	SS-1	1.0-2.5					21.2											
RB- 6	SS-2	2.5-4.0					13.3											
RB- 6	SS-3	4.0-5.5					12.0											[
El			Pro			ille Pike	& CR 30)0N Rou					Project I County	Hand	cock	LTS		
CTL Engineering, Inc. Route Phone: 317-295-8650 Location					: Fortville Pike and CR 300 N CTL Proj. No.: 22050123IND : Greenfield, Indiana													

Boring	Sampla	Depth	Wet	Dry	Qu	с	Moisture	Max Dry	Optimum Moisture		Resilient		Sulfate	Dhoophorus	Dotoccium	LOI	eet 2 of 2	
Doning	Sample	Deptil	Density (pcf)	Density (pcf)	(ksf)	(ksf)	%	(pcf)	Moisture %	@ Opt.	Modulus +2% of Opt.	In-situ	(ppm)	Phosphorus (ppm)	(ppm)	(%)	Carbonate (%)	
RB- 6	SS-4	6.0-7.5					11.4											
RB- 6	SS-5	8.5-10.0					10.2											
RB- 6	SS-6	13.5-15.0					7.0											
RB- 7	BS-1	0.0-5.0	129.4	110.8			16.8	111.4	16.4	11,232								7.0
RB- 7	SS-1	0.5-2.0					20.7											
RB- 7	SS-2	2.0-3.5					15.0											
RB- 7	SS-3	3.5-5.0					27.6											
RB- 7	SS-4	6.0-7.5					12.5											
RB- 7	SS-5	8.5-10.0					9.3											7.0
RB- 7	SS-6	13.5-15.0					8.6											
TS- 1	BS-1	0.0-0.3					21.6							30	111	3.3		6.8
TS- 2	BS-1	0.0-0.3					18.3							48	119	3.6		6.7
TS- 3	BS-1	0.0-0.3					14.5							24	100	3.2		6.9
TS-4	BS-1	0.0-0.3					21.1							25	97	2.9		6.8

CTL Engineering, Inc. Phone: 317-295-8650

SUMMARY OF SPECIAL LABORATORY TEST RESULTS

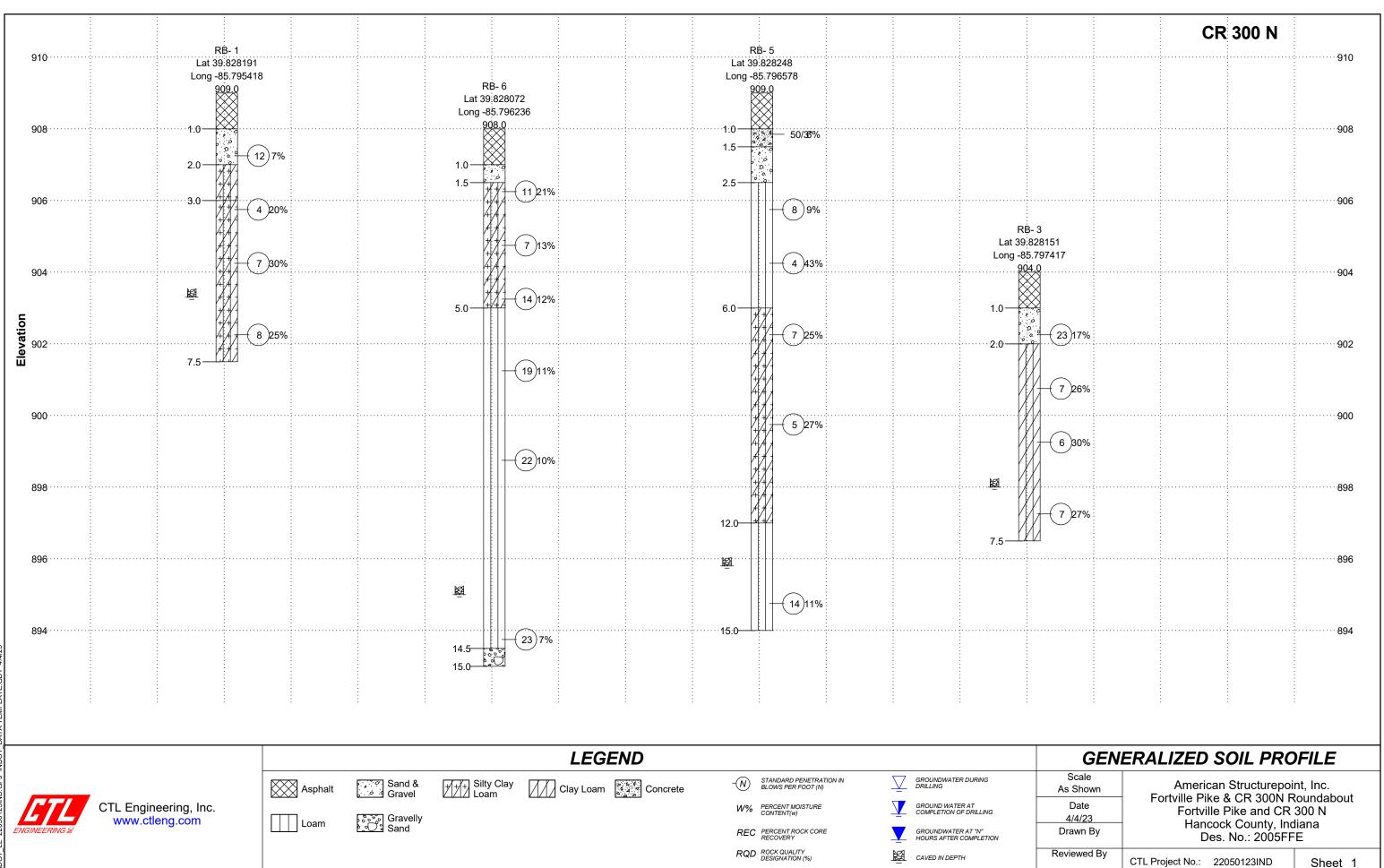
Des. No. :2005FFE

Project Type: Fortville Pike & CR 300N Roundabout

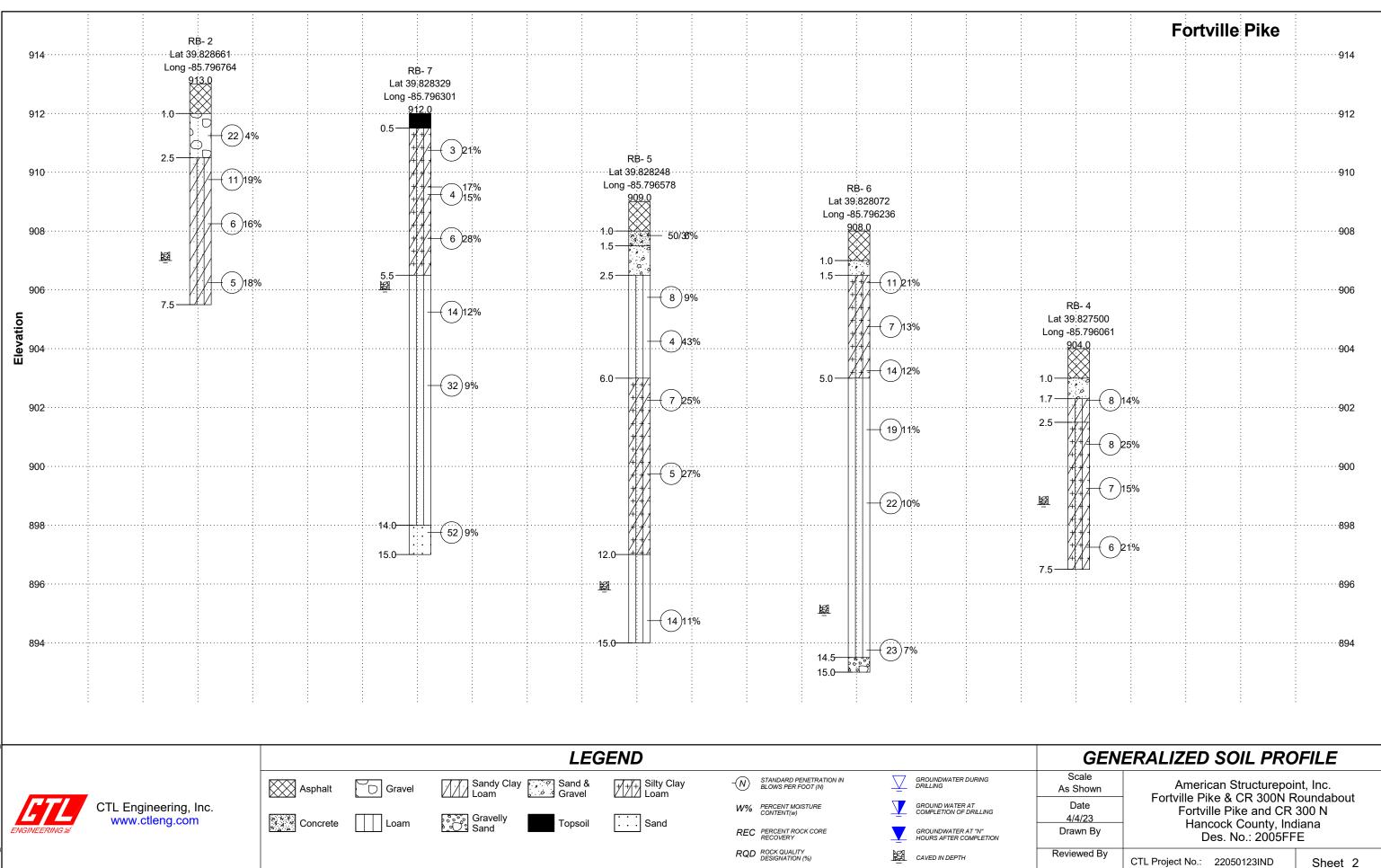
Project No.

County :<u>Hancock</u>

CTL Proj. No.: 22050123IND


Route : Fortville Pike and CR 300 N

Location : Greenfield, Indiana


APPENDIX D

SOIL PROFILES

T || 22050123IND GP | INDOT DATA TEMPI ATE

DOT LL 22050123IND.GPJ INDOT DATA TEMPLATE.GDT 4,